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Abstract

Purpose – To improve flow solutions on meshes with cells/elements which are distorted/
non-orthogonal.

Design/methodology/approach – The cell-centred finite volume (FV) discretisation method is well
established in computational fluid dynamics analysis for modelling physical processes and is typically
employed in most commercial tools. This method is computationally efficient, but its accuracy and
convergence behaviour may be compromised on meshes which feature cells with non-orthogonal
shapes, as can occur when modelling very complex geometries. A co-located vertex-based (VB)
discretisation and partially staggered, VB/cell-centred (CC), discretisation of the hydrodynamic
variables are investigated and compared with purely CC solutions on a number of increasingly
distorted meshes.

Findings – The co-located CC method fails to produce solutions on all the distorted meshes
investigated. Although more expensive computationally, the co-located VB simulation results always
converge whilst its accuracy appears to grace-fully degrade on all meshes, no matter how extreme the
element distortion. Although the hybrid, partially staggered, formulations also allow solutions on all
the meshes, the results have larger errors than the co-located vertex based method and are as
expensive computationally; thus, offering no obvious advantage.

Research limitations/implications – Employing the ability of the VB technique to resolve the
flow field on a distorted mesh may well enable solutions to be obtained on complex meshes where
established CC approaches fail

Originality/value – This paper investigates a range of cell centred, vertex based and hybrid
approaches to FV discretisation of the NS hydrodynamic variables, in an effort characterize their
capability at generating solutions on meshes with distorted or non-orthogonal cells/elements.

Keywords Meshes, Flow, Fluid dynamics

Paper type Research paper

1. Introduction
Computational fluid dynamics (CFD) modelling of “real-life” processes requires a mesh
that accurately represents the true geometry of the physical domain. This often means
fitting a mesh to a highly complex geometry. Of course, fitting a highly orthogonal
mesh to a “real-life” geometry can be one of the most time consuming aspects of the
CFD modelling process. A mesh that truly represents the physical domain of such a
process may well contain regions, aspects of which are badly distorted. Much research
has been done in developing mesh generation algorithms to improve the quality and
reduce the non-orthogonality of such meshes, see for example Bijl et al. (2005) and
Chand (2005). However, in many modelling scenarios involving different physical
phenomena, such as close coupling between flow and stress, even if a highly
orthogonal mesh can represent the initial physical domain, mesh distortion can occur
during the solution process. In such multi-physics problems, even if one starts with a
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high quality mesh it may degrade during the solution process. In such modelling
scenarios, a numerical solution technique is required that is robust on unstructured
meshes which feature elements with non-orthogonal shapes.

The most frequently used unstructured mesh discretisation methods are the finite
element method (FEM) (Zienkiewicz and Morgan, 1983) and the finite volume method
(FVM) (Barth, 1992). The finite volume (FV) discretisation technique is well established
in CFD analysis. The physically meaningful FV principles of applying conservation
laws locally to control volumes has lead to the FV method being the preferred method
for modelling physical processes involving the solution of flow. There are a number of
FV approaches, usually either vertex-centered, where the unknowns are defined at the
mesh nodes or cell-centred (CC), where the unknowns are defined at the element
centroid. The most widely used is the CC approach, which is employed in many CFD
codes (e.g. CFX (www.ansys.com), FLUENT (www.fluent.com), STAR-CD (www.
cd-adapco.com) and PHYSICA (www.multi-physics.com)). This technique is
computationally efficient, on a highly orthogonal mesh, using simple
approximations to discretise the terms in the transport equation, it has low memory
requirements and fast simulation times. However, the method is not robust on an
unstructured non-orthogonal mesh and computation of the fluxes is problematic on a
non-orthogonal grid. Various discretisation techniques have been developed for
unstructured meshes including, edge-based schemes that employ dual control volumes
and edge-based data structures (Barth, 1992; Lyra et al., 1994; Crumpton and Giles,
1995; Sorensen et al., 1999) as well as others (Coirier, 1994; Mavriplis, 1995; Haselbacher
and Blasek, 2000) who use cell based gradient reconstruction (Jameson et al., 1986) who
used cell vertex techniques (Chakrabartty, 1990) who employed a vertex-centred
scheme for flow past complex geometries (Boivin et al., 2000; Perron et al., 2004) and
who stored solved variables at the cell-circumcenters to enable solutions on
unstructured meshes.

Difficulties can occur when approximating the control volume face derivatives,
using the standard linear central differencing schemes, employed in most FV codes.
Standard schemes are only sufficient if the points involved in calculating control
volume face values are connected by a straight line, which is normal to the boundary
face, as is the case on an orthogonal mesh. On complex grids, this is not usually the
case and the accuracy of the scheme deteriates in areas of poor quality. Corrections
have to be made to the usual discretisation process to account for non-orthogonality in
the mesh (Croft et al., 1995; Croft, 1998). On distorted grids these corrections are only
first-order accurate. Local errors appear in the solution dependant on the extent of
mesh distortion and the solution may diverge. Peric (1985) investigated this effect on
distorted meshes and proposed grid refinement and smoothing to reduce the error.
Moulinec and Wesseling (2000) investigated several different interpolation schemes to
improve the derivatives at the cell faces on distorted meshes. Other authors (Barth and
Jespersen, 1989; Weiss et al., 1999) proposed different interpolation schemes based on
Taylor series expansions. Lehnhauser and Schafe (2002) reported significantly
improved accuracy with a multi-dimensional Taylor series expansion scheme which
ensured second-order accuracy even on strongly distorted meshes. The problems
encountered in discretising the transport equations on distorted meshes are
exacerbated when employing pressure-correction schemes in the solution of the
incompressible Navier-Stokes equations. Addition of the non-orthogonal correction
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terms in the pressure-correction equation is expensive and complex and it is common
practice to omit these terms (Demirdzic, 1982; Braaten and Shyy, 1986). However,
omission or simplification of these terms can introduce stability problems into the
solution process and lead to difficulties with convergence on highly distorted meshes.
Since, in complex geometries it is often not possible to have a good quality mesh over
the entire domain, many authors have sought to address this problem (Peric, 1990; Cho
and Chung, 1994; Lehnhauser and Schafe, 2003; Zhu et al., 2004).

An alternative FV technique is the control volume-FEM, developed by Prakash and
Patankar (1985) and described by Baliga (1996) which has successfully been applied to
complex flow problems with irregular geometries (Reyes et al., 2001). This method can
be viewed in a FV context as a vertex-based FVM (VB) (Taylor et al., 2003). The local
variation of a variable within an element is described by simple piecewise polynomial
functions allowing distorted meshes to be handled with relative ease. This flexibility of
applying the VB discretisation technique to arbitrary irregular meshes is appealing.
However, the method requires extensive storage/topological information and the
computational cost is far more expensive than the CC technique. Combining aspects of
both the FEM and FVM has become increasingly popular and has been applied in a
number of research areas. A mixed FEM-FVM, originally developed by Dervieux
(1985) has been employed by many in the simulation of turbulent flow, including 3D
turbulent compressible flow (Hallo et al., 1997) and large Eddy simulations (Koobus
and Farhat, 2004). This method uses finite element discretisation for the diffusive part
of the Navier-Stokes equations and FV computations for all other terms. Durlofsky
(1993) combined FV-finite elements in the solution of multiphase flow in porous media.
Here the fluid pressure field is discretised using finite elements and the fluid phases are
computed using the FVM. This method has been applied by Mazzia and Putti (2005)
and Chavent et al. (2003) amongst others. Hybrid FV-FE have also been employed for
viscoelastic flows (Wapperom and Webster, 1998). Here, the FEM is applied to the
continuity and momentum equations and the FVM to the constitutive equations for
stress. Chan and Kallinderis (1998) used a FV formulation for the 3D Navier-Stokes
equations of incompressible flow and a finite element discretisation of the
pressure-correction equation. In the fore going methods, although not an exhaustive
list, the cell-vertex FVM has commonly been employed on triangle-tetrahedral meshes.
The variables are all stored at the same locations, the mesh vertices. In a tetrahedral
mesh, there are less vertices than elements, but on a hexahedral mesh there are more
vertices than elements and a CC formulation would require less storage.

This paper is an introduction to a study investigating the resolution of flow
variables on unstructured skewed meshes whilst working within the FV methodology.
As part of this investigation the VB discretisation technique, utilizing element based
piecewise linear shape functions, is compared with the CC discretisation method. In
this initial study hybrid VB/CC solution methods are investigated in an effort to
capture the efficiency of the CC method, whilst retaining the geometric flexibility of the
VB discretisation procedure. The paper outlines both the CC and VB approach in the
solution of the incompressible Navier-Stokes equations and utilises hybrid
discretisation in the solution of partially staggered flow variables. Problems of
velocity-pressure coupling and avoiding checkerboard pressure fields are discussed. In
the final section, the CC, VB and hybrid schemes are compared on a lid-driven cavity
problem. Comparisons are made with benchmark solutions on meshes with different

Finite volume
method

215



degrees of skewness. The aim of this paper is to access their ability to improve
numerical solution accuracy on distorted meshes. A further paper will detail a
combined CC/VB technique which enables well established CC physical models to be
employed on meshes of bad quality.

2. The discretisation method
An outline of the discretisation techniques employed in this paper are given in the
following sections. Figure 1 shows the control volumes employed in the discretisation
process for a 2D mesh.

2.1 Cell-centred approach
In the CC approach, the general variable f is solved and stored at the cell centre
(element centroid). The terms in the general transport equation are discretised using
finite-difference type approximations to describe how f varies between solution points.
These approximations assume that adjacent element centre points lie on a line,
perpendicular to the element face, that passes through the face centroid. However,
fitting a mesh to a complex geometry frequently leads to some degree of
non-orthogonality in the generated mesh requiring corrections to be made to the
usual discretisation process. The inclusion of these correction terms allow solutions on
meshes with some degree of skewness. However, difficulties arise in calculating the
correction terms to any more than first order accuracy. Problems are also encountered
as the corrections are functions of the solved variable which can lead to stability
problems. Therefore, inclusion of these corrections often leads to oscillatory results,
difficulties in convergence and longer simulation times. On highly skewed meshes a
high percentage of the solution can comprise of these correction terms and the solution
may diverge. A detailed description of the particular discretisation technique used here
is given by Croft (1998).

2.2 Vertex-based approach
The VB control volume consists of a number of sub-control volumes constructed
around the mesh vertices. A mesh element is divided into a number of sub-control
volumes by lines connecting the mid-face and element centre. The surfaces of the
sub-control volumes within a mesh element define the control volume surrounding the
mesh vertex, as shown in Figure 1 for a 2D mesh. The general variable f is solved and

Figure 1.
(a) Cell-centred control
volume; (b) vertex-based
control volume

(A) (B)
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stored at the vertices of the mesh elements. The terms in the conservation equation are
approximated working in local co-ordinates. This allows for all elements of a certain
type to be treated identically regardless of how distorted any element may be in terms
of global co-ordinates. The integration points are located at the centre of the
sub-control faces which form the control volume boundary. The terms in the general
transport equation are discretised using simple linear shape function approximations:

xðs; t; uÞ ¼
Xn
i¼1

Niðs; t; uÞxi

yðs; t; uÞ ¼
Xn
i¼1

Niðs; t; uÞyi

zðs; t; uÞ ¼
Xn
i¼1

Niðs; t; uÞzi

ð1Þ

where xi, yi and zi are the global co-ordinates at node i and n is the number of nodes
associated with the element under consideration:

fðs; t; uÞ ¼
Xn
i¼1

Niðs; t; uÞfi ð2Þ

where fi is the variable described at node i.
The local co-ordinate system, integration points, shape functions and local to global

transformations are given in McBride (2003) along with a detailed description of the
discretisation technique.

3. Solution of fluid flow
The momentum transport equations can be written as:

›ðruiÞ

›t
þ divðr_uuiÞ2 divðm7uiÞ ¼ Sui 2 7xi p ð3Þ

The velocity field must also satisfy mass conservation:

›r

›t
þ divðr_uÞ ¼ Sm ð4Þ

For the incompressible Navier-Stokes equations difficulty arises from how to resolve
the role played by pressure. A pressure gradient source term appears in all three
momentum equations but there is no other equation linked to pressure. A pressure
equation can be derived from the continuity equation by expressing velocity
derivatives as a function of the pressure gradient using the momentum equations. The
most common approach to solving this system of equations, which is employed in this
investigation, is a segregated solution procedure, the equations are solved
independently by means of an iterative guess and correct strategy, such as the
SIMPLE or SIMPLER algorithm (Patankar and Spalding, 1972). However, these
methods require some form of under-relaxation to ensure convergence. An alternative
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approach, which has been investigated for laminar flow by Ammara and Masson
(2004) is to use a fully coupled system, where the pressure-velocity coupling is treated
implicitly and momentum, pressure and pseudo-velocity equations are derived and
solved simultaneously. This method required no under-relaxation and is reported for
laminar Navier-Stokes equation to improve robustness and efficiency.

As a starting point for the solution procedure, the system of algebraic equations
obtained from the discretised momentum equations can be expressed in the following
form:

auiui 2
X

anbunb ¼ bui 2 7xi p ð5Þ

The velocity field is also subject to the constraint that it must satisfy the continuity
equation (4). The discretised form of the continuity equation for a control volume (cv)
is:

rcvV cv 2 r0
cvV

0
cv

Dt
þ

f

X
rf Af ð_u:_nÞf ¼ V cvðSmÞcv ð6Þ

Pressure and velocity are intrinsically coupled, if the correct pressure field is applied in
the momentum equations the resulting velocity field will satisfy the continuity
equation.

3.1 Pressure-velocity coupling
It is well known that co-located discretisation methods that solve and store pressure
and velocity components at the same locations can suffer from oscillating
(checker-board) pressure predictions. However, in any discretisation technique, if a
checker-board pressure field can be supported by both the discretised form of the
momentum and continuity equations spurious oscillating pressure predictions can
emerge.

In order to prevent checkerboarding in the final solution, the discretisation
technique used in the momentum or continuity equation must provide a filter to
remove oscillating results. Checkerboarding is overcome by devising interpolation
procedures which express face velocities in terms of adjacent pressure values rather
than alternate pressure values. The procedure, known as momentum interpolation,
does not use pure linear interpolation to define the face velocity. An additional term is
included which is dependent on adjacent pressure values. Several variations of this
scheme have been proposed (Hsu, 1981; Rhie and Chow, 1983; Peric, 1985; Burns and
Wikkles, 1987) but the basic idea remains the same. It is these newly defined face
velocity values that are used in the discretision of the continuity equation. Thus, at
convergence, it is the face velocities that directly satisfy continuity. The CC velocities
only comply with conservation indirectly in that they fulfil the momentum
interpolation formula. Another method, which essentially uses the same key idea, is
to define a new face velocity field which is driven by the pressure difference between
adjacent cell values (Prakash and Patankar, 1985). This new face velocity field can be
considered as a type of staggered velocity field. Instead of deriving this velocity field
directly, a pseudo velocity field which contains the convection, diffusion and source
term, is obtained from the momentum equations, and a pressure gradient term added.
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The basic idea behind these interpolation techniques is the replacement of the
pressure gradient term, which is obtained using linear interpolation of cell velocities,
with a new pressure gradient term which is calculated from adjacent pressure values.
The face velocities can now be written in terms of adjacent pressure values and it is
these that are used to satisfy continuity. Thus, a checkerboard pressure field would be
recognised by these face velocities. Although the momentum equations still contain a
pressure gradient term that does not recognise a checkerboard pressure field, such a
field would not satisfy the continuity equation.

3.2 Cell-centred solution procedure
The CC solution method employed here utilizes the Rhie and Chow (1983) interpolation
method, to avoid spurious pressure predictions and a SIMPLE-type iterative solution
technique.

The momentum equations are discretised using Rhie-Chow interpolation to obtain
the face velocity components. The control volume pressure gradient, which enters the
momentum equations as a source term, is evaluated as a sum of surface integrals over
each face bounding the control volume:Z

cv

7xi pdV .
f

X
Af ðnxi Þf pf ð7Þ

where pf is interpolated from adjacent values.
The pressure-correction procedure employs the SIMPLE algorithm. Initially, the

discretised momentum equations are solved using a guessed pressure field ( p*) to yield
velocity components u *, y * and w*. A correction term p

0

is defined as the difference
between the correct pressure field p and the guessed pressure field p*. Similarly
velocity correction terms u0i are defined to relate u*i to the correct velocities ui:

Using the SIMPLE approximation, a face velocity correction term is obtained:

ðu0iÞf ¼ 2
1

ðaui Þf
ð7xi p

0Þf ¼
1

ðaui Þf
Af ðnxi Þf ð p

0
P 2 p0AÞ ð8Þ

where subscript P indicates the value at the center of the control volume and subscript
A indicates the adjacent control volume.

The discretised continuity equation (6), can now be written as:

f

X
rf

A2
f n

2
i

ai
ð p0P 2 p0AÞf ¼

r0
PV

0
P 2 rPVP

Dt
2

f

X
Af rf ð_u* · _nÞf ð9Þ

where ðu*i Þf is obtained using Rhie-Chow interpolation and the subscript i in the first
term indicates a summation over the three coordinate directions.

The above equation leads to a set of linear equations with weak diagonal dominance
and can be written in the form:

aPp
0
P þ

nb

X
anbp

0
nb ¼ bP ð10Þ

Once the above equation has been solved and a pressure correction field obtained,
the pressure field is updated. The SIMPLE approximation tends to lead to an
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over-estimation of the pressure correction values, making the pressure-correction
equation susceptible to divergence unless some under-relaxation is used during the
iterative procedure. In the procedure used here, a relaxation value of 0.6 is set as
standard.

It is the element cell values that are updated rather than face values. The velocity
correction values are obtained from pressure correction values using the SIMPLE
approximation:

u0i ¼
27xi p

0

aui
ð11Þ

Expanding this equation gives the velocity corrections in terms of pressure corrections
in the element and all its neighbours:

ðu0iÞP ¼ 2
1

ðaui ÞP f

X
nxiAf ðap

0
P þ ð1 2 aÞp0AÞ ð12Þ

where a is a wieghting factor.

3.3 Vertex-based solution procedure
The VB procedure employs the method of Prakash and Patankar (1985) which defines
a new face velocity field which is dependant on adjacent pressure values, to overcome
spurious pressure predictions and the revised SIMPLER iterative solution technique.

To initiate the solution procedure the momentum equations are discretised using the
VB technique and the velocities (u i) are stored at the mesh vertices. Initially, the face
velocity is obtained employing the shape function interpolation functions:

ðuiÞf ¼
Xn
j¼1

Njðu
iÞj ð13Þ

where n is the number of nodes of the element that bounds the face, j is the element
node, and Nj are the interpolation functions.

The control volume pressure gradient can be evaluated as equation (7) or as a sum
of sub-volume integrals:

Z
cv

7xi p ¼
scv

X
V scv

Xn
j¼1

›Nj

›xi
pj ð14Þ

Once an initial velocity field has been obtained, a pseudo velocity field ð _̂u; _̂v and _̂wÞ is
defined that does not depend directly on the pressure distribution, using equation (5)
and the SIMPLER approximations:

ûi ¼

P
anbunb þ bui

aui
ð15Þ

d ui ¼
V

aui
ð16Þ

giving:
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ðûiÞcv ¼ ðuiÞcv þ ðd ui Þcv

›p

›xi

� �
cv

ð17Þ

Using conservation principles for the control volume face, a new velocity field
ð_~u; _~v and ~_wÞcan now be defined that is dependent upon adjacent pressure values:

ð~uiÞf ¼ ðûiÞf 2 ðd ui Þf
›p

›xi

� �
f

ð18Þ

where ðûiÞf and ðdui Þf are calculated from nodal values assuming linear variation
within an element. The pressure gradient across a face is obtained using local element
shape function derivatives:

›p

›xi
¼

Xn
j¼1

›Nj

›xi
pj ð19Þ

where n is the number of nodes belonging to an element and Nj is the shape function
associated with node j of the element (which bounds the face). The face pseudo velocity
ðû iÞf and pressure gradient coefficient ðd ui Þf are interpolated linearly from nodal
values.

The continuity equation (4) is discretised using the _~u field as follows:

rcvV cv 2 r0
cvV

0
cv

Dt
þ

f

X
rf Af ð_~u · _nÞf ¼ V cvðSmÞcv ð20Þ

Substituting equation (18) into equation (20) and rearranging gives:

f

XXn
j¼1i¼x;y;z

X
rf Af d

ui
f

›Nj

›xi
· ni

� �
pj ¼

scv

X r0
scvV

0
scv 2 rscvV scv

Dt

2
f

X
Af rf ð _̂u · _nÞf þ V cvðSmÞcv

ð21Þ

For Dirichlet boundary conditions, where velocity is specified, the known mass flux is
transferred to the right-hand side of equation (21) and the corresponding pressure
coefficient d ui is set to zero. If pressure is known at the boundary node, the control
volume cofficient is set equal to one, all off-diagonal terms are set to zero and the
right-hand side set equal to the known pressure. At outflows where pressure and
velocity are not known, equation (21) is completed by estimating the mass flux out of
the domain based on the most recently calculated values of the velocity field at the
boundary.

This leads to a positive definite system of linear equations with a larger bandwidth
than the CC approach. For a hexahedral mesh there are a possible 27 non-zero
coefficients, compared to seven in the CC case. The pressure equations can be
transformed into a system of pressure-correction equations using:

½A�½p0� ¼ ½b0�; where ½b0� ¼ ½b̂�2 ½A�½p*� ð22Þ
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No relaxation is applied to pressure, otherwise the resulting corrected ~_u field will not
satisfy mass conservation. The ~_ui velocities are updated using equation (18) with no
relaxation. It is this mass conserving face velocity field that is used in the discretised
momentum equations. In order to advance the solution process, the nodal velocities are
also updated using:

ui ¼ ûi 2 dui
›p

›xi
ð23Þ

a relaxation factor of 0.7 is applied as standard.

4. Hybrid discretisation of hydrodynamic variables
This section outlines hybrid discretisation solutions for the hydrodynamic variables,
pressure and velocity. It will be demonstrated later that the CC discretisation method
is fast and efficient, but does not handle skewed meshes with the ease of the VB
technique. The question is, is there a method that can combine the efficiency of the CC
technique whilst retaining the geometric flexibility of the VB technique?

The pressure field could be obtained using the VB discretisation procedure whilst
using CC discretisation for the momentum equations. Obtaining better resolution of the
pressure field on distorted meshes should give improved resolution of the velocity field
since pressure is the driving force for the components of velocity. The solution of
the momentum equations is used as a vehicle for advancing the solution process. The
velocity components are updated and defined in terms of local pressure gradients.
Using the momentum equations to obtain a pseudo velocity field but defining a face
velocity field using VB techniques allows for better definition of the local pressure
gradient (from eight points on a hexahedral element) on a distorted mesh.

Conversely, the VB technique, which has the ability to handle distorted meshes,
could be used to discretise the momentum equations. Would the velocity field obtained
from the discretised momentum equations be sufficient to couple with CC techniques
for the pressure field? The face velocity components would now be defined in terms of
the pressure difference across an element face (from two points on a hexahedral mesh).
Would this weaker definition of the pressure gradient term effect the final solution on
distorted meshes?

In both scenarios, mass is conserved over the scalar control volume not the
momentum control volume. Unlike unstructured staggered grid procedures, the VB
and CC control volume face integration points do not coincide, obtaining values at the
location required involves interpolation. Estimating VB values from CC values and
vice-versa could potentially introduce errors into the solution procedure.

As in co-located formulations, the hybrid discretisation has the potential for
decoupling to occur and checkerboard pressure fields to emerge. Velocity and pressure
are only partially staggered. The velocity components are located at the corners of the
pressure control volume and vice versa. A checkerboard pressure field would give a
zero pressure gradient term. The discretised momentum equations would not recognise
a checkerboard pressure field. Conversely, using linear interpolation to obtain face
velocity values would result in a checkerboard velocity field satisfying the continuity
equation. In order to prevent spurious pressure predictions the hybrid discretisation of
the continuity equation defines a face velocity field which is dependant on adjacent
pressure values. Thus, solution of the continuity equation does not allow checkerboard
pressure values to emerge.
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A detailed account of the hybrid discretisation and solution procedure is given in
the following sections.

4.1 Pressure – vertex-based, velocity – cell-centred
The pressure field is obtained using VB techniques, where pressure is solved and
stored at the mesh vertices. The velocity field is obtained using CC techniques where
the velocity components are solved and stored at the element center. As a starting
point, the momentum equations are discretised using CC techniques. The inclusion of
the non-orthogonal correction terms in the discretised momentum equations leads to
stability and convergence problems, therefore these terms were omitted. The element
cell pressure gradient, which enters the momentum equation as a source term, is
calculated from nodal values using local shape function derivatives:

›p

›xi
¼

Xn
j¼1

›Nj

›xi
pj ð24Þ

The momentum equations are solved and components of velocity are obtained at the
element centroid. Pseudo velocity components ûe; ŷ e; ŵe and pressure gradient
cofficients due ; d

y
e ; d

w
e are defined for each element, as in equations (15) and (16).

A new face velocity field ~_uf ; dependant on adjacent pressure values, is defined on
the face of the VB control volume:

ð~uiÞf ¼ ðûiÞf 2 ðd ui Þf
›p

›xi

� �
f

ð25Þ

The above equation requires the sub-control volume face values to be defined for
the pseudo velocity, pressure gradient coefficient and pressure gradient terms.
Since, pressure values are located at the mesh nodes, the face pressure gradients can
easily be calculated using the derivatives of the interpolation functions, as shown in
equation (19).

What is not so obvious is how to obtain VB sub-control volume face values from the
element based pseudo velocities and pressure gradient coefficients. To illustrate this,
Figure 2 shows a 2D mesh element containing faces of the VB sub-control volumes.
Assuming element centre values are known but values, fscv; are required at
sub-control volume face integration points. If, for example, the mesh element shown
contains a local maximum value, fele ¼ 4; and all surrounding elements have values of

Figure 2.
Element containing VB

control volume face

Mesh Node

Element Center

Sub-control Volume

Face Integration PointXX
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fnbr ¼ 3; assuming equal distances and linear variation, interpolating from element
centre values would give fscv ¼ 3:75: However, if the mesh was distorted the
sub-control volume face integration point would no longer lie on the line connecting
adjacent element centre points and a correction term would be required. If nodal values
are obtained from element values, local linear shape functions can be employed to
obtain VB face values. On a structured mesh simple averaging of element values can
easily approximate nodal values. On unstructured meshes, the distance from the
element centre to the mesh node needs to be taken into account as follows:

fnode ¼

Xne

i¼1

ðfd21Þ

Xne

i¼1

d21

ð26Þ

where d is the distance from the element centre to the mesh node and ne is the number
of elements associated with the node. In both cases, extrapolation errors may occur at
the boundary.

Using weighted averaging to obtain nodal values and employing shape functions to
obtain face values, introduces the potential for local minima and maxima values to be
lost. Referring to Figure 2 and assuming fele ¼ 4 and fnbr ¼ 3 the interpolated nodal
values fnode for the element would be fnode ¼ 3:25 giving fscv ¼ 3:25 which is
incorrect. An improved estimate can be obtained by including the element centre value
when evaluating fscv: The element centroid forms a corner point of each face. If all
other corner points are interpolated from nodal values. The VB face value can then be
evaluated from its corner values, which includes the element centroid, in this case
giving fscv ¼ 3:625 which is much closer to fscv ¼ 3:75:

Once VB face values have been obtained, the VB form of the discretised continuity
equation (21) can be transformed into a pressure-correction equation, following VB
procedures to obtain nodal pressure values. The mass conserving velocity field is the ~_u
field and all other transport equations should be discretised over the VB control
volume. The momentum equations are only used as a means of advancing the solution
of ~_u: The element based velocity _u is updated using equation (23) as:

ðuiÞe ¼ ðûiÞe 2 ðd ui Þe
›p

›xi

� �
e

ð27Þ

where the element pressure gradient is evaluated from nodal values using equation (24).

4.2 Pressure – cell-centred, velocity – vertex-based
Here the pressure field is solved and stored at the element centroid and the velocity
component, ui, are solved and stored at the mesh vertices. An initial velocity field is
obtained by discretising the momentum equations over the VB control volume using
the VB discretisation technique. The VB face velocity components are simply
interpolated from nodal values using local linear interpolation functions:

ðuiÞf ¼
Xn
j¼1

NjðuiÞj ð28Þ

where n is the number of nodes associated with the element that contains the face.
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The pressure gradient term which enters the momentum equations as a source term
is a little more difficult to evaluate. The assumption is made that the pressure gradient
across a sub-control volume is approximately equal to the pressure gradient over the
element containing the sub-volume. Any errors arising from this assumption would
tend to zero as the mesh is refined. Using equation (7) to obtain the pressure gradient
over an element leads to the element pressure gradient term being a function of
alternate pressure values. Summing the element pressure gradients over the entire VB
control volume:

›p

›xi

� �
cv

¼
Xne

j¼1

›p

›xi

� �
j

ð29Þ

where ne is the number of elements of which the control volume node is a vertex.
This results in the VB pressure gradient being a function of a series of adjacent
pressure values. Unfortunately, due to cancelling out, a checkerboard pressure field
would result in a zero pressure gradient across the VB control volume. A checkerboard
pressure field is still perceived as a uniform pressure field by the momentum equations.

As with the VB procedure an element face velocity _̂ue; dependent upon adjacent
pressure values, needs to be defined. Nodal pseudo velocities _̂un are defined as
equation (15) and nodal pressure gradient coefficients as:

d ui ¼ a21
ui

ð30Þ

Since, each element face has a vertex located at its corner, element pseudo velocities
and pressure gradient coefficients are simply averaged from corner values:

ðûiÞe ¼

Pn
j¼1ðûiÞj

n
ð31Þ

and:

duif

� �
e
¼

Pn
j¼1d

ui
j

n
ð32Þ

where n is the number of element face corners.
An equation for the element face velocity ~_ue may be defined as:

ð~uiÞe ¼ ðûiÞe 2 duif

� �
e
ð7xi pÞf ð33Þ

where the pressure gradient across the element face is evaluated as:

ð7xi pÞf ¼ Af nxi ð pA 2 pP Þ ð34Þ

Discretising the continuity equation (4) using the _̂u field and substituting in
equation (33) leads to:

f

X
rf

A2
f n

2
i

ai
ð pP 2 pAÞf ¼

r0
PV

0
P 2 rPVP

Dt
2

f

X
Af rf ð _̂u · _nÞf ð35Þ
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where the subscript i in the first term indicates a summation over the three coordinate
directions.

Again the pressure equation can be transformed into a pressure correction equation
as (22). No relaxation is applied to pressure. Mass is conserved over the element and the
momentum equations are used as a means of advancing the solution, a standard
relaxation factor of 0.7 is applied to velocities. The nodal velocities are updated using
equation (23).

5. Test case – lid-driven cavity
The co-located CC, co-located VB and hybrid solution methods, outlined in the previous
paragraphs, are applied to the solution of flow only. Solutions are obtained on a
Cartesian and distorted meshes with the same number of elements. The results are
compared with benchmark solutions and a measure of the error due to mesh distortion
is made. The aim is to validate the solution methods and test their ability to handle
mesh skewness.

This case considers flow induced in a square cavity by moving the high y boundary
wall. All of the other boundary walls are stationary. The initial velocity field was set to
zero in the whole domain. The velocity on the moving boundary was set to 1 m s21 in
the x-direction. The pressure was fixed to zero in the centre of the cavity. Material
properties were set to give a Reynolds number of 100, density r ¼ 1 kg m23 and
kinematic laminar viscosity vlam ¼ 0.01 m2 s . 21. A steady state solution was sought.
The results obtained are compared against the solutions of Ghia et al. (1982) who
produced a set of benchmark solutions using the multigrid technique and 99 elements
in both the x- and y-direction. The CC and VB co-located techniques and the two hybrid
discretisation methods are validated with the benchmark solutions using a Cartesian
mesh of 99 by 99 elements. Results are compared with solutions obtained employing a
much coarser mesh, 35 elements in both the x- and y-direction, with different degrees of
skewness. Figures 3-5 show the meshes employed in the simulations, with mesh 1
being a standard Cartesian mesh, mesh 2 and 3 are distorted versions of mesh 1. The
discretisation methods employed are:

Figure 3.
Mesh 1
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. velocity and pressure co-located at element centre (cc);

. velocity and pressure co-located at mesh vertex (vb);

. velocity solved at element centre and pressure at mesh vertex (ve pn); and

. velocity solved at mesh vertex and pressure at element centre (vn pe).

Velocity profiles are plotted for the u-velocity component, on a line parallel to the
moving lid midway up the domain, and for the v-velocity component, perpendicular to
the moving lid across the centre of the domain. For comparison purposes the velocity
components are all plotted at the same geometric location, the mesh nodes, values
being extrapolated from element values when velocity is solved at the element centre.
This may lead to some extrapolation error in the boundary values of velocity
components solved cell centred.

Figure 4.
Mesh 2

Figure 5.
Mesh 3
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5.1 Results
Figure 6 shows the simulation results for a Cartesian 99 by 99 element mesh and the
benchmark solutions of Ghia et al. (1982). As can be seen from Figure 6 all the solution
methods are in good agreement with the benchmark solutions.

Figures 7-10 show the results obtained for simulations performed on meshes 1-3, where
the mesh density, approximately 1,225 elements, is much reduced. Included for
comparison purposes are the results obtained on the much finer 99 by 99 element Cartesian
mesh. Mesh 1 tests the ability of the solution method to obtain results on a fairly coarse
mesh. Meshes 2 and 3 test the ability of the methods to handle distortion in a mesh. For

Figure 6.
Cartesian mesh 99 by
99 elements
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both the distorted meshes 2 and 3, divergence was encountered if CC non-orthogonal
correction terms were included. For this reason, the cc and ve pn methods discretise the
momentum equations without the inclusion of these terms. The vb approach (Figure 8)
handled all the meshes extremely well and good agreement was obtained with the
solutions on the 99 by 99 element mesh. The cc results (Figure 7) failed to resolve the local
minimum and maximum values of the v-velocity on mesh 2 and the solution failed on mesh
3 due to divergence. Convergence was achieved for the hybrid formulations on all meshes.
The hybrid results seem dependent on the type of mesh employed, with no one method

Figure 7.
Co-located CC method
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handling both distorted meshes well. Solving vn pe (Figure 10) gave reasonable results on
mesh 2, the u-velocity profiles were in good agreement and the v-velocity profiles came
close to achieving local maximum and minimum values. However, on mesh 3 the results
degenerated and there were significant errors in both u- and v-velocity profiles.
Conversely, using the ve pn formulation (Figure 9) the distortion in mesh 3 was handled
well and only slight errors were obtained in the solution. Mesh 2 solutions for the
u-velocity were reasonable but the v-velocity solutions completely failed to resolve the

Figure 8.
Co-located VB method
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local maximum and minimum values. A measure of the error due to mesh distortion is
given in Table I. The error was calculated using the VB solutions, obtained on the 99 by 99
mesh, as the base results and the error normalised using the value of the lid velocity.

5.2 Convergence behaviour and run times
The solutions were considered converged when the L2 norm of the change in the
solution of all the flow variables fell to 1023. The flow residuals were monitored during
the solution procedure and the logarithm of the L2 norm is shown as a function of the

Figure 9.
Velocity solved CC,

pressure solved VB, ve pn
method
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number of iterations in Figures 11-14 for mesh 1. In the cc solution method (Figure 11)
only slight oscillations occur in the pressure residuals and convergence was achieved
in 112 iterations. Much larger oscillating pressure residuals are encountered when
solving using the vb method (Figure 12). After approximately 90 iterations the
pressure residual oscillations reduce and convergence is achieved in 129 iterations.
In both methods only very slight oscillations occur in the velocity residuals. In the

Figure 10.
Velocity solved VB,
pressure solved CC, vn_pe
method
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ve_pn solution method (Figure 13) only slight oscillations are encountered in the
residuals but convergence is slow requiring 216 iterations. The vn_pe solution method
(Figure 14) produces large oscillations in the pressure and u-velocity residuals but
convergence is achieved in 113 iterations.

u-velocity (per cent) v-velocity (per cent)

vb
Mesh 2 0.15 0.26
Mesh 3 0.88 0.66
cc
Mesh 2 2.96 3.00
Mesh 3 – –
ve_pn
Mesh 2 4.63 3.72
Mesh 3 3.02 2.46
vn_pe
Mesh 2 1.57 1.46
Mesh 3 3.05 3.18

Table I.
Normalised error due to

mesh distortion 24

Figure 11.
Co-located CC: solution
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Co-located VB: solution
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The moving lid cavity case is a 2D problem but simulations were carried out on a mesh
of hexahedral elements. In this case, there are over twice as many mesh vertices than
elements. Solving VB, variables are resolved in 2D planes. Hence, in order to compare
the solution methods, run times are given as an average per variable per solution point
and are shown in Table II for all the meshes investigated. The simulations were
performed on an AMD Athlon 1.39 GHz processor. The run times are case and mesh
dependent, for the Cartesian mesh, the vb method took approximately 4.5 times the cc
method. Of the hybrid methods solving vn pe was the fastest taking approximately 2.5
times longer than cc. The ve pn method was very slow to converge, the number of
iteration required to achieve convergence was approximately 1.6-1.9 times the other
methods. As a result the run time per variable per solution point was eight times

Figure 14.
Velocity VB, pressure CC
(vn_pe): solution residual
history vs iterations
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Mesh 1 Mesh 2 Mesh 3

cc 5.44 £ 1024 5.44 £ 1024 –
vb 2.44 £ 1023 4.88 £ 1023 5.53 £ 1023

ve_pn 4.36 £ 1023 7.93 £ 1023 7.33 £ 1023

vn_pe 1.4 £ 1023 2.65 £ 1023 2.5 £ 1023

Table II.
Run times per variable
per solution point

Figure 13.
Velocity CC, pressure VB
(ve_pn): solution residual
history vs iterations
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greater than the cc technique. The cc run time remained constant for meshes 1 and 2.
The vb and hybrid run times increased when solving on the distorted meshes 2 and 3.

The memory requirements for VB solutions are far greater than CC solutions.
Storing the geometric requirements for a VB control volume requires approximately
590 bytes compared to only 179 bytes for a CC control volume. Extra memory is also
required in the solution of a VB variable. For the solution of the moving lid problem on
meshes comprising of 8,100 elements and 16,562 vertices the average memory
requirements per solution point was as follows: cc – 92 bytes, vb – 245 bytes, ve_pn –
381 bytes and vn_pe – 336 bytes.

5.3 Discussion
The cavity flow problem illustrates the ability of the co-located VB method to handle
mesh distortion. There is no significant difference in the simulation results obtained on
the distorted meshes compared to those on the standard Cartesian mesh. Conversely,
the co-located CC method struggles to produce solutions on the distorted mesh and the
solution diverges on mesh 3. The inclusion of non-orthogonal correction terms, in an
effort to improve the CC solutions, can introduce more instabilities into the solution
process. The CC results can be significantly improved on meshes where the inclusion of
correction terms produce solutions. However, on severely distorted meshes erroneous
or diverging results are often encountered.

The hybrid schemes did enable solutions on all the meshes, however, the solutions
obtained on the distorted meshes included non-orthogonal errors of varying degrees.
Solving the pressure VB allows for pressure gradients to be more accurately represented
on the distorted meshes, the VB method (equation (19)) calculates the face pressure
gradient from eight vertex values for a hexahedral element whereas the CC method
(equation (34)) calculates face gradients from only two adjacent element values.
However, the CC discretisation of the momentum equations still contain non-orthogonal
errors. These errors are then passed into the pressure equation via the pseudo-velocities.
The velocity components are updated from the pseudo-velocities and VB pressure
gradients. Improving the resolution of the pressure field on a non-orthogonal mesh
directly influences the velocity components, but non-orthogonal errors in the discretised
momentum equations still pass into the final solution. The critical region in the cavity
flow problem for recirculating flow is the mesh quality in the top right hand corner.
Although mesh 3 is overall the most distorted, in the critical region mesh 2 is more
non-orthogonal. The non-orthogonal errors in the discretised CC momentum equations
in this region result in a weaker recirculation of flow on mesh 2. Solving the momentum
equations VB allows good resolution of pseudo-velocities to be obtained on the distorted
meshes but the discretised CC pressure equation will still include non-orthogonal errors.
These errors in the pressure field will pass into the momentum equations through the
pressure gradient term. In the cavity flow problem the errors in the pressure field result
in a weaker recirculation of flow as the mesh became more distorted.

6. Conclusion
It is now well established that the CC discretisation technique produces expeditious
and reliable solutions of the Navier-Stokes flow equations on orthogonal meshes. For
problems, where the geometry can be represented by a good quality mesh the CC
method is computationally efficient producing a diagonally dominant solution matrix
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that can be solved speedily by nearly any iterative solve. However, fitting a highly
orthogonal mesh to a complex geometry can be one of the most time consuming
aspects of the modelling process. On distorted meshes the inclusion of non-orthogonal
correction terms during the discretisation process to account for non-orthogonality in
the mesh can be problematic. On arbitrarily distorted meshes divergence is often
encountered. Solving without accounting for mesh non-orthogonality introduces
inaccuracies, with solutions having some dependence on the mesh skewness. When
convergence is obtained on highly distorted meshes the solutions are often highly
inaccurate. The non-orthogonal errors introduced into the solution method are
multiplied when solving coupled variables. For flow solutions, errors in the velocity
field will effect pressure solutions and vice versa. In this way errors accumulate,
increasing as the solution procedure progresses. For multi-physics multi-mesh
problems, such as coupled flow and stress problems, mesh deformation can occur
during the solution procedure introducing non-orthogonality issues, see Slone et al.
(2004) for a discussion of this challenge.

The VB discretisation technique has been shown to handle distorted meshes with
ease. Solutions obtained on skewed meshes are comparable with solutions obtained on
a uniform Cartesian mesh. The computational requirements of the VB discretisation
method are its main drawback. On a stationary mesh the discretisation procedure can
be accelerated by the storage of the elemental shape functions and their derivatives at
local integration points. However, on a moving mesh these quantities, which require
the inversion of a Jacobian matrix associated with each element, need to be recalculated
at each time-step. This plus the additional topological and control volume
specifications makes the VB technique computationally very expensive. The VB
solution matrix is symmetric for sub-control volumes of equal size or asymmetric for
unequal sub-control volumes, and positive-definite with a much larger bandwidth than
the solution matrix of the CC discretisation procedure. The increased communication
between solution points leads to less solver iterations required to obtain solutions but
increased solver computational time. Solving directly on the boundary wall, boundary
solutions are more accurately represented and boundary information is more readily
passed through the solution domain. The VB computational time, per solved variable,
is approximately 1.8 times that of the CC method. The additional time requirements
can be offset by time saved in mesh generation. But the solution of additional variables
increasingly adds to the VB simulation time.

In an attempt to reduce computational requirements, whilst retaining the ability of
the VB technique to handle mesh distortion, hybrid flow solutions were investigated.
The partially staggered hybrid formulations and co-located techniques investigated
require specialist discretisation techniques to avoid checkerboard pressure predictions.
Discretising either the momentum or continuity equation using VB techniques allowed
the solution on distorted meshes where purely CC techniques fail. However,
non-orthogonal errors introduced through CC discretisation degraded the solutions and
results appear to have some dependence on the distorted mesh. Discretising the
momentum equations using VB methods allows better solution of vertex velocity
components, but face velocity components are dependent on CC face pressure
gradients. Errors in defining the pressure gradient across the face of a distorted control
volume are introduced into the solution process. Solving pressure using VB
discretisation allows for face pressure gradients to be more accurately represented, but
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non-orthogonal errors are still included in the CC discretisation of the momentum
equations. Neither of the hybrid formulations gave consistently better results on all
meshes investigated.

In summary, the VB discretisation technique for the solution of flow gave
comparable solutions on all meshes investigated but is computationally expensive and
requires considerable software restructuring for existing CFD software tools. A novel
discretisation approach will be outlined in a following paper (McBride et al., in
preparation), this method utilises the VB approach for the flow solution and employs
well established physics models that use CC techniques for other transported
properties. This combined VB – CC approach, allows solutions on highly distorted
meshes that defeat purely CC solutions and is relatively straightforward to embed
within generic CC based CFD tools.
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